High-Dimensional Mahalanobis Distances of Complex Random Vectors

نویسندگان

چکیده

In this paper, we investigate the asymptotic distributions of two types Mahalanobis distance (MD): leave-one-out MD and classical with both Gaussian- non-Gaussian-distributed complex random vectors, when sample size n dimension variables p increase under a fixed ratio c=p/n→∞. We distributional properties samples are independent, but not necessarily identically distributed. Some results regarding F-matrix F=S2−1S1—the product covariance matrix S1 (from independent variable array (be(Zi)1×n) inverse another S2 (Zj≠i)p×n)—are used to develop MDs. generalize so that independence between components is required.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independence Test for High Dimensional Random Vectors

This paper proposes a new mutual independence test for a large number of high dimensional random vectors. The test statistic is based on the characteristic function of the empirical spectral distribution of the sample covariance matrix. The asymptotic distributions of the test statistic under the null and local alternative hypotheses are established as dimensionality and the sample size of the ...

متن کامل

Learning Local Invariant Mahalanobis Distances

For many tasks and data types, there are natural transformations to which the data should be invariant or insensitive. For instance, in visual recognition, natural images should be insensitive to rotation and translation. This requirement and its implications have been important in many machine learning applications, and tolerance for image transformations was primarily achieved by using robust...

متن کامل

Parsimonious Mahalanobis kernel for the classification of high dimensional data

The classification of high dimensional data with kernel methods is considered in this article. Exploiting the emptiness property of high dimensional spaces, a kernel based on the Mahalanobis distance is proposed. The computation of the Mahalanobis distance requires the inversion of a covariance matrix. In high dimensional spaces, the estimated covariance matrix is ill-conditioned and its invers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9161877